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Scaling behavior of the absorbing phase transition in a conserved lattice gas around the upper
critical dimension
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(Received 1 March 2001; published 22 June 2001

We analyze numerically the critical behavior of a conserved lattice gas that was recently introduced as an
example of the new universality class of absorbing phase transitions with a conservé@tiigdd Rev. Lett.
85, 1803(2000]. We determine the critical exponent of the order parameter as well as the critical exponent of
the order parameter fluctuations h=2,3,4,5 dimensions. A comparison of our results and those obtained
from a mean-field approach and a field theory suggests that the upper critical dimension of the absorbing phase
transition is four.
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[. INTRODUCTION we observe a mean-field scaling behavior. Thus our results
suggest that the upper critical dimension of the CLG model
The scaling behavior of directed percolation is recognizeds four as already predicted from the field theoretical ap-
as the paradigmatic example of the critical behavior of sevproach[7].
eral nonequilibrium systems that exhibits a continuous phase
transition from an active state to an absorbing nonactive state
(see for instanc€l,2]). Such systems are common in phys- Il. D=2

ic:'s, biology, as well as catalytic chemical reactions. Thi; We consider the CLG model dd-dimensional cubic lat-
widespread occurrence corresponds to the well known unjces of linear sizeL. Initially one distributes randomiy
versality hypothesis of Janssen and Grassberger that models,;| particles on the system whege denotes the particle
which exhibit a continuous phase transition to a single abgensity. In order to mimic a repulsive interaction a given
sorbing state generally belong to the universality class oparticle is considered axtiveif at least one of its B neigh-
directed percolatiof3,4]. boring sites on the cubic lattice is occupied by another par-
Recently Rosset al. introduced a conserved lattice gas ticle. If all neighboring sites are empty the particle remains
(CLG) with a stochastic short range interaction that exhibitsinactive Active particles are moved in the next update step
a continuous phase transition to an absorbing state at a critie one of their empty nearest neighbor sites, selected at ran-
cal value of the particle densiffs]. The CLG model is ex- dom. Starting from a random distribution of particles the
pected to belong to a new universality class of absorbingystem reach after a transient regime a steady state that is
phase transitions characterized by a conserved field. Simil@tharacterized by the density of active sijgs The density
to the above hypothesis the authors conjectured that “alpa is the order parameter of the absorbing phase transition,
stochastic models with an infinite number of absorbing statek€-, it vanishes if the control parameteris lower than the
in which the order parameter evolution is coupled to a noncritical valuep.. In contrast to the work of Rossit al. [5],
diffusive conserved field define a unique universality class”Who used a parallel update scheme, we applied in our simu-
[5]. Besides the CLG model the authors considered the corations a random sequential update, i.e., all active sites are
served threshold transfer process model as well as a modifiisted, and then updated in a randomly chosen sequence.
cation of the stochastic sandpile model of Mar6& and We consider in two dimensions simple cubic systems of
observed numerically compatible values of the critical expolinear sizeL=32,64,128. . .,2048 with periodic boundary
nents. Furthermore a reaction-diffusion model was intro-conditions. Starting with a random configuration of particles,
duced in[7] that is expected to belong to the same univer-2 sufficient number of update steps has to be performed to
sality class. This reaction-diffusion model allows to derive areach the steady state where the number of active sites fluc-
field theoretical description that is expected to represent thiates around an average valsee Fig. 1. Approaching the
critical behavior of the whole universality claEa). transition point, more and more update steps are needed to
In this work we consider for the first time the scaling reach this steady state. For instance in the tas@048 we
behavior of the CLG model and therefore the critical behav-lise 2< 10° update steps to “equilibrate” the system. In the
ior of the new universality class in higher dimensions. Westeady state the number of active sites is monitored for 5
determine numerically the critical exponent of the order pa-< 10° update steps. This procedure is repeated in all dimen-
rameter as well as the exponent of the order parameter flusions for at least ten different initial configurations. From
tuations. Our results show that the values of the exponentdis data we determine the average density of active sites
depend on the dimension f@<4. Above this dimension (pa as well as its fluctuations
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FIG. 1. The density of active sites, as a function of time FIG. 3. The average density of active sitgg) as a function of
(number of update stepfor a certain value op. After a transient — p.in D=2. The symbols mark different system siteee Fig.
regime, which depends on the initial configuration, the density %) The dashed line corresponds to a power-law fit with
active sites fluctuates around the steady state vadle (dashed  _ (344 94+ 0.00003 ang3=0.637+0.009. In the inset we display
line). the same data fqs.=0.344 91 anch.= 0.344 97. Compared to the

. ) ) ) above valudsolid line) both curves are characterized by significant

In Fig. 2 we plot the average density of active sites as gyryatures in the plotted log-log diagram. For the sake of simplicity
fUnCtion Of the pal’ticle density fOI’ Val’iOUS SyStem Sist. we p|ot in the inset lines instead of symb0|sl
As one can sedp, tends to zero in the vicinity op
~0.345. Assuming that the scaling behavior of the density of},¢ valuesg=0.63+0.01 andp.=0.288 75, obtained from
active sites is given by simulations with a parallel update scheme and of smaller

B system sizesl(<512) [5]. Thus we see that the different
(pad~(p=pc)”,

update scheme affects only the value of the critical density
one variesp. until one gets a straight line in a log-log plot.

but not the critical exponens. Furthermore the value g
Convincing results are obtained fpg=0.344 94-0.000 03 differs from the corresponding value of the directed percola-
and the corresponding curve is shown in Fig. 3. kgr

tion universality clasgspp=0.584+0.004 (see[2]).
=0.34491 andp.=0.34497 we observe significant curva- The fluctuations of the order paramefex. (1)] are plot-
tures in the log-log plotsee inset of Fig. B In this way we

ted in Fig. 4. Approaching the transition poifip, increases
estimate the error bars in the determination of the criticaf”lnd diverges g, Close to the critical point the fluctuations
density. A regression analysis yields the value of the order

scale as
parameter exponem®=0.637+0.009. Rosskt al. reported

)

Apa~(p—pd) 7 (3

0.25 in the active phasésee inset of Fig. ¥ Using a regression
1= 32 analysis one gety=0.384+0.023.
"= 64 ’
IR . l. D=3
s =256 .
015 | *L=512 . . . )
» 1=1024 . For the three dimensional model system sizes friom
:\c; * [=2048 L =16 toL=160 are considered. Close to the transition point
0.0 . . 5% 10° update steps are used to reach the steady state in the
ot case of the largest system size. The obtained results for the
R density of active sitegp,) are shown in Fig. 5. A straight
005 :' D=p i line in a log-log plot is obtained fgs,=0.2179+0.0001 and
N ) the corresponding value of the order parameter exponent is
000 L /. ‘ : ‘ ‘ B=0.837£0.015. The error bars of the critical density are
033 034 035 036 037 038 039 040

P

determined in the same way as for=2. The value of the
order parameter exponent agrees within the error bars with

the corresponding values of the Manna sandpile mogel (
=0.84+0.02) and of a reaction diffusion modeB€0.86
+0.02) that are expected to belong to the same universality

FIG. 2. The average density of active si{gg) as a function of
the global particle density for various system sizek in D=2
dimensions.
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FIG. 4. The fluctuations of the order paramefgr, as a func-
tion of the global density in D=2. The symbols mark different
system sizegsee Fig. 2 and the dashed line corresponds to the
critical densityp.=0.344 94. The inset displays the fluctuations as a
function of p—p.. The dashed line corresponds to a power-law
behavior[Eg. (3)] with an exponenty=0.384+0.023.

FIG. 6. The fluctuations of the order paramefgs, as a func-
tion of p—p. in D=3. The symbols mark different system sizes
(see Fig. 5 The data can be interpreted either as a power law with
a small exponenty (the dashed line corresponds tg=0.18
+0.06) or as a logarithmic grow{lsee Eq(4) and inset, where the
dashed line is to guide the elye

class[7]. Our refsult differs slight'ly from the cprresponding rithmic divergencdi.e., y=0) atp. according to
value of the directed percolation universality cla8gp
=0.81+0.01(see[2)). N _
Similar to the two dimensional case the order parameter Apa~[In(p=po. “@

fluctuationsA p, display a maximum at the transition point . - .
but the dependence dfp, on the density of particles is not '(Ij"hus thetntl;]merl_c;gl ::iatg 'tng'cﬁﬁ thdattthe flutc)tugt![mg ted
clear. In Fig. 6 we plot the fluctuations in a log-log plot. It !;/r(]-:‘rge at the cri I'Ca pg{lhn u ”e ata ca;n ein Tzrpre_t(;
seems that the asymptotic behavior corresponds to a pow&f'. er a\?\n?] pl(:)wfrr] aw wi t'a StT"a exponend %r tas Ell o_gatr;]_ i
law [Eq. (3)] with an exponenty=0.18+0.06. But as the mc;pn?ro - Further investigations are needed to clarify this
inset of Fig. 6 shows the data are also consistent with th&0'M:
assumption that the fluctuations are characterized by a loga-

IV. D=4

10° ; In order to analyze the scaling behavior of the four dimen-
D=3 sional CLG model we performed numerical simulations with
. system size& €{8,16,32,48. In the case of the largest sys-
.../' tem size 6< 10° updates steps were used to reach the steady
} state. Plotting the values of the average particle deripity
107+ ’.". g in a log-log plot, no straight line, i.e., no pure power law

’ » behavior could be observed. To illustrate this behavior we
. plot in Fig. 7 the logarithmic derivative

Py

10° | e *[=16 ] (9|n<p3> )
¥ ‘/‘ '§= :635 dIn(p—pc)’
A ® /=

7 4 — . . -
P ~ : ijgg which can be interpreted as an effective expon@gt If the

, scaling behavior of the active site density is given by &.

10°, 5 & e & o the logarithmic derivative tends to the value @ffor p—p,

10 10 10 . L : \ ;

p-p —0. This behavior is observed in the three-dimensional case

¢ (see Fig. 7. ForD =4 the logarithmic derivative displays no

FIG. 5. The average density of active sifgs) as a function of ~ Saturation forp—pc, i.e., the scaling behavior of the four-

p—p. for various system sizels in D=3. The dashed line corre- dimensional model cannot be described by a simple power-

sponds to a power-law fit witp,=0.2179-0.0001 and3=0.837 law behavior. Significant corrections to the usual scaling be-

+0.015. havior [Eq. (2)] occur for instance at the upper critical
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FIG. 7. The logarithmic derivativK_ (5)] as a function ofp FIG. 8. The density of active sites =4 rescaled according to

— pe. The logarithmic derivative can be interpreted as an effectiveEd- (6). The assumed asymptotic behavisiraight line in a log-log
exponentBq;. The figure shows that the four-dimensional exponentPlot) is obtained forp.=0.1571-0.0002 andB=0.39. Thus the
does not display a saturation as the exponents of the three- arf§aling behavior of the order parameter of the four-dimensional
five-dimensional models do. The dashed lines correspond to theodel is governed by the mean-field expongrt 1 modified by
three-dimensional valug=0.837+0.015 and the mean-field value logarithmic corrections. The dashed line is just to guide the eye.
B=1, respectively. The shadowed region marks the uncertainty of
the determination of. Thus we assume that the scaling behavior of the order
parameter is given in leading order by the ansatz

dimensional where the scaling behavior is governed by the
mean-field exponents modified by logarithmic corrections. (pay~(p=p)PlIn(p—pc)|® (6)
Recently a modified version of the CLG model was intro-
duced where the active particles are distributed to randomlyith B=1. Therefore we varied in our analysis B apgd
chosen empty lattice sitd8]. Since the randomness of the until we get the expected asymptotic behavior. The best re-
particle hopping breaks long range spatial correlations thisult is obtained for B-0.39 andp.=0.15710.0002 and the
model is expected to be characterized by the mean-field scatorresponding scaling plot is shown in Fig. 8. As one can see
ing behavior of the CLG model. Mapping the dynamics ofour data are consistent with the assumption that the
this random hoppn’]g CLG model to a simp|e branching pro_asymptotic Scaling behavior of the four-dimensional model
cess one can derive the critical expongat 1. This value of ~ OPbeys Eq(6). ) _ _
the order parameter exponent is also obtained from a field The mean-field behavior of the qu_ctuat|0ns |s_character-
theoretical description of the CLG modél] and was already 12€d by y=0 that corresponds to a jum8]. Taking the
predicted from a phenomenological field thediy] of the Ioganthm_lc corrections into account we assume that the
so-called fix-energy stochastic sandpile model that is exasymptotic scaling behavior of the fluctuations obeys the an-
pected to be in the same universality class. satz

Apa=Ap{P—constp—po)In(p—po)|" . @
TABLE |. The critical densityp. and the critical exponentg
and y of the CLG model for various dimensioiis The symbol* Plotting the fluctuations as a function ofp€ pJ)|In(p
denotes logarithmic corrections to the power-law behavior. In the_pc)|F one varies the correction expondhuntil one gets a

case of the three-dimensional model the data of the fluctuatiorg;traight line. Convincing results are observed for 1.66
could be interpreted as a small exponent or as a logarithmic growtly. 5 1" and the corresponding plot is shown in Fig(fér T

(see text >1.76 andl’<1.56 we observe significant curvatureShe
D ) 5 y extrapolation to the vertical axis yield the fluctuations at the
¢ transition pointA p{®)=0.325+ 0.005.

Thus we get that the scaling behavior of the four-
2 0.34494-0.00003  0.63%0.009 0.384:0.023 dimensional CLG model is characterized by the mean-field
3 0.2179-0.0001 0.83%0.015 0 or 0.180.06 exponents modified by logarithmic corrections and we con-
4 0.1571 0.0002 iy 0* clude therefore that the upper critical dimension of the CLG
5 0.123G-0.0004 1 0 model isD,=4. This value agrees with the conjecture of a

field theory[7].
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FIG. 9. The fluctuations of the order paramedss, as a func- FIG. 11. The fluctuations of the order parameler, as a func-
tion of (p—pJ|IN(p—py)|" in D=4 [see Eq.7)]. Nearly straight tion of the densityp in D=5. The symbols mark different system
lines are obtained foF =1.66+0.1. Thus the scaling behavior of sizesL (see Fig. 10 The dashed line marks the value of the critical
the order parameter of the four-dimensional model is governed bglensity. The inset displayAp./(p—pc) as a function ofp—p.

the mean-field exponent=0 modified by logarithmic corrections. The asymptotic behavior is characterized by a simple- go) ~*
The dashed line corresponds to a linear fit with the slefe643  dependencédashed lingthat corresponds to the mean-field behav-
and the interceph p{*)=0.325. ior (see text

V. D=5 the mean-field solutio@= 1. One has to admit that the small

In the case of the five-dimensional model we considere&Wailable sy_stem siz_es =5 (l.‘$18) hinder an analysis of
system sizes fronb =4 up toL=18. In the latter case 10 the pure critical scaling behavior. But as we will see the data
update steps were used to reach the steady state close to e _sufﬁment to indicate that the asymptotic_ scaling b_ehavior
transition point. The obtained values of the order parametelp 9/Ven byS=1. Therefore, we plot in the inset of Fig. 10
are plotted in Fig. 10. The average density of active site$Pa/(P—pc) @s a function ofp—p.. Approaching the tran-
seems to vanish linearly at the transition point. This is supSition point the rescaled density of active sites indeed satu-
ported by the logarithmic derivativiEq. (5)] that is plotted rates. Thus the five-dimensional CLG model is characterized
in Fig. 7. The effective exponent saturates in the vicinity ofPy the mean-field scaling behavior

0.25 . :
. (P2~ P~ Pe. ®
® é:g n D=5
L] —3 L ]
020 F +7-8 . The fluctuations of the order parametes, are plotted in
4+ L=10 o Fig. 11. As one can see the fluctuations are characterized by
015 | L=12 . | a jump at the transition point. Following the mean-field be-
N ) v L=14 K 80 — ; ‘ havior one expects that the asymptotic behavior of the fluc-
o~ > L=16 . »Tamy, tuations is given by
~ 040 | * [=18 R T25| S
‘ R ™
- 20} u"-. Apa=Ap®—constp—p,). 9
0.05 t Iy v
0. 15 =) 'z ]
A 10 10 10 . .
s D, In order to confirm this ansatz we pldtp,/(p—pc) as a
0.00 F . . ‘ function of p—p.. If the above ansatz is valid the corre-
0.10 0.15 0.20 0.25 0.30 0.35

sponding curves have to display an asymptotic power-law
behavior with the exponent1 and the prefacton p{®.
This behavior is indeed observésee inset of Fig. J)1land

p

FIG. 10. The average density of active sipg) as a function of )
the densityp for various system sizdsin D=>5. The inset displays W€ getAp,~'=0.231+0.006.
(p!(p—po) as a function ofp— p.. The saturation fop—p—0 Thus the asymptotic behavior of the five-dimensional
indicates that the asymptotic behavior of the order parameter agreésLG model is characterized by the mean-field exponents.
with the mean field behaviofp,)~p—p.. The critical density is  This behavior strongly supports the above conclusion that
p.=0.1230+0.0004. the upper critical dimension of the CLG model is four.
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VI. CONCLUSIONS D=<4. Above this value we observe a mean-field like scaling
. . . havior.
We analyze numerically the critical behavior of a CLG behavio
model in various dimensions. The values of the critical den- ACKNOWLEDGMENTS

sity and of the critical exponents are determined and the

results are listed in Table I. Our analysis suggests that four is | would like to thank A. Hucht, H. K. Janssen, and A.
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cal exponents depend on the value of the dimension fothe manuscript.
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