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Scaling behavior of the absorbing phase transition in a conserved lattice gas around the uppe
critical dimension

S. Lübeck*
Theoretische Tieftemperaturphysik, Gerhard-Mercator-Universita¨t Duisburg, Lotharstrasse 1, 47048 Duisburg, Germany

~Received 1 March 2001; published 22 June 2001!

We analyze numerically the critical behavior of a conserved lattice gas that was recently introduced as an
example of the new universality class of absorbing phase transitions with a conserved field@Phys. Rev. Lett.
85, 1803~2000!#. We determine the critical exponent of the order parameter as well as the critical exponent of
the order parameter fluctuations inD52,3,4,5 dimensions. A comparison of our results and those obtained
from a mean-field approach and a field theory suggests that the upper critical dimension of the absorbing phase
transition is four.
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I. INTRODUCTION

The scaling behavior of directed percolation is recogniz
as the paradigmatic example of the critical behavior of s
eral nonequilibrium systems that exhibits a continuous ph
transition from an active state to an absorbing nonactive s
~see for instance@1,2#!. Such systems are common in phy
ics, biology, as well as catalytic chemical reactions. T
widespread occurrence corresponds to the well known
versality hypothesis of Janssen and Grassberger that mo
which exhibit a continuous phase transition to a single
sorbing state generally belong to the universality class
directed percolation@3,4#.

Recently Rossiet al. introduced a conserved lattice ga
~CLG! with a stochastic short range interaction that exhib
a continuous phase transition to an absorbing state at a
cal value of the particle density@5#. The CLG model is ex-
pected to belong to a new universality class of absorb
phase transitions characterized by a conserved field. Sim
to the above hypothesis the authors conjectured that
stochastic models with an infinite number of absorbing sta
in which the order parameter evolution is coupled to a n
diffusive conserved field define a unique universality clas
@5#. Besides the CLG model the authors considered the c
served threshold transfer process model as well as a mo
cation of the stochastic sandpile model of Manna@6# and
observed numerically compatible values of the critical ex
nents. Furthermore a reaction-diffusion model was int
duced in@7# that is expected to belong to the same univ
sality class. This reaction-diffusion model allows to derive
field theoretical description that is expected to represent
critical behavior of the whole universality class@7#.

In this work we consider for the first time the scalin
behavior of the CLG model and therefore the critical beh
ior of the new universality class in higher dimensions. W
determine numerically the critical exponent of the order
rameter as well as the exponent of the order parameter
tuations. Our results show that the values of the expon
depend on the dimension forD<4. Above this dimension

*Email address: sven@thp.uni-duisburg.de
1063-651X/2001/64~1!/016123~6!/$20.00 64 0161
d
-

se
te

s
i-

els,
-
f

s
iti-

g
lar
ll
s
-

’’
n-
ifi-

-
-
-

e

-

-
c-
ts

we observe a mean-field scaling behavior. Thus our res
suggest that the upper critical dimension of the CLG mo
is four as already predicted from the field theoretical a
proach@7#.

II. DÄ2

We consider the CLG model onD-dimensional cubic lat-
tices of linear sizeL. Initially one distributes randomlyN
5rL particles on the system wherer denotes the particle
density. In order to mimic a repulsive interaction a giv
particle is considered asactiveif at least one of its 2D neigh-
boring sites on the cubic lattice is occupied by another p
ticle. If all neighboring sites are empty the particle rema
inactive. Active particles are moved in the next update st
to one of their empty nearest neighbor sites, selected at
dom. Starting from a random distribution of particles t
system reach after a transient regime a steady state th
characterized by the density of active sitesra. The density
ra is the order parameter of the absorbing phase transit
i.e., it vanishes if the control parameterr is lower than the
critical valuerc . In contrast to the work of Rossiet al. @5#,
who used a parallel update scheme, we applied in our si
lations a random sequential update, i.e., all active sites
listed, and then updated in a randomly chosen sequence

We consider in two dimensions simple cubic systems
linear sizeL532,64,128, . . . ,2048 with periodic boundary
conditions. Starting with a random configuration of particle
a sufficient number of update steps has to be performe
reach the steady state where the number of active sites
tuates around an average value~see Fig. 1!. Approaching the
transition point, more and more update steps are neede
reach this steady state. For instance in the caseL52048 we
use 23106 update steps to ‘‘equilibrate’’ the system. In th
steady state the number of active sites is monitored fo
3105 update steps. This procedure is repeated in all dim
sions for at least ten different initial configurations. Fro
this data we determine the average density of active s
^ra& as well as its fluctuations

Dra5LD~^ra
2&2^ra&

2!. ~1!
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In Fig. 2 we plot the average density of active sites a
function of the particle densityr for various system sizesL.
As one can seêra& tends to zero in the vicinity ofr
'0.345. Assuming that the scaling behavior of the density
active sites is given by

^ra&;~r2rc!
b, ~2!

one variesrc until one gets a straight line in a log-log plo
Convincing results are obtained forrc50.344 9460.000 03
and the corresponding curve is shown in Fig. 3. Forrc
50.344 91 andrc50.344 97 we observe significant curv
tures in the log-log plot~see inset of Fig. 3!. In this way we
estimate the error bars in the determination of the criti
density. A regression analysis yields the value of the or
parameter exponentb50.63760.009. Rossiet al. reported

FIG. 1. The density of active sitesra as a function of time
~number of update steps! for a certain value ofr. After a transient
regime, which depends on the initial configuration, the density
active sites fluctuates around the steady state value^ra& ~dashed
line!.

FIG. 2. The average density of active sites^ra& as a function of
the global particle densityr for various system sizesL in D52
dimensions.
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the valuesb50.6360.01 andrc50.288 75, obtained from
simulations with a parallel update scheme and of sma
system sizes (L<512) @5#. Thus we see that the differen
update scheme affects only the value of the critical den
but not the critical exponentb. Furthermore the value ofb
differs from the corresponding value of the directed perco
tion universality classbDP50.58460.004~see@2#!.

The fluctuations of the order parameter@Eq. ~1!# are plot-
ted in Fig. 4. Approaching the transition pointDra increases
and diverges atrc . Close to the critical point the fluctuation
scale as

Dra;~r2rc!
2g ~3!

in the active phase~see inset of Fig. 4!. Using a regression
analysis one getsg50.38460.023.

III. DÄ3

For the three dimensional model system sizes fromL
516 to L5160 are considered. Close to the transition po
53106 update steps are used to reach the steady state in
case of the largest system size. The obtained results for
density of active siteŝra& are shown in Fig. 5. A straigh
line in a log-log plot is obtained forrc50.217960.0001 and
the corresponding value of the order parameter exponen
b50.83760.015. The error bars of the critical density a
determined in the same way as forD52. The value of the
order parameter exponent agrees within the error bars
the corresponding values of the Manna sandpile modelb
50.8460.02) and of a reaction diffusion model (b50.86
60.02) that are expected to belong to the same universa

f

FIG. 3. The average density of active sites^ra& as a function of
r2rc in D52. The symbols mark different system sizesL ~see Fig.
2!. The dashed line corresponds to a power-law fit withrc

50.344 9460.000 03 andb50.63760.009. In the inset we display
the same data forrc50.344 91 andrc50.344 97. Compared to the
above value~solid line! both curves are characterized by significa
curvatures in the plotted log-log diagram. For the sake of simplic
we plot in the inset lines instead of symbols.
3-2
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class@7#. Our result differs slightly from the correspondin
value of the directed percolation universality classbDP
50.8160.01 ~see@2#!.

Similar to the two dimensional case the order parame
fluctuationsDra display a maximum at the transition poin
but the dependence ofDra on the density of particles is no
clear. In Fig. 6 we plot the fluctuations in a log-log plot.
seems that the asymptotic behavior corresponds to a po
law @Eq. ~3!# with an exponentg50.1860.06. But as the
inset of Fig. 6 shows the data are also consistent with
assumption that the fluctuations are characterized by a l

FIG. 4. The fluctuations of the order parameterDra as a func-
tion of the global densityr in D52. The symbols mark differen
system sizes~see Fig. 2! and the dashed line corresponds to t
critical densityrc50.344 94. The inset displays the fluctuations a
function of r2rc . The dashed line corresponds to a power-l
behavior@Eq. ~3!# with an exponentg50.38460.023.

FIG. 5. The average density of active sites^ra& as a function of
r2rc for various system sizesL in D53. The dashed line corre
sponds to a power-law fit withrc50.217960.0001 andb50.837
60.015.
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rithmic divergence~i.e., g50) at rc according to

Dra;u ln~r2rc!u. ~4!

Thus the numerical data indicate that the fluctuationsDra
diverge at the critical point but the data can be interpre
either as a power law with a small exponent or as a logar
mic growth. Further investigations are needed to clarify t
point.

IV. DÄ4

In order to analyze the scaling behavior of the four dime
sional CLG model we performed numerical simulations w
system sizesLP$8,16,32,48%. In the case of the largest sys
tem size 63106 updates steps were used to reach the ste
state. Plotting the values of the average particle density^ra&
in a log-log plot, no straight line, i.e., no pure power la
behavior could be observed. To illustrate this behavior
plot in Fig. 7 the logarithmic derivative

] ln^ra&
] ln~r2rc!

, ~5!

which can be interpreted as an effective exponentbeff . If the
scaling behavior of the active site density is given by Eq.~2!
the logarithmic derivative tends to the value ofb for r2rc
→0. This behavior is observed in the three-dimensional c
~see Fig. 7!. For D54 the logarithmic derivative displays n
saturation forr→rc , i.e., the scaling behavior of the four
dimensional model cannot be described by a simple pow
law behavior. Significant corrections to the usual scaling
havior @Eq. ~2!# occur for instance at the upper critica

a

FIG. 6. The fluctuations of the order parameterDra as a func-
tion of r2rc in D53. The symbols mark different system size
~see Fig. 5!. The data can be interpreted either as a power law w
a small exponentg ~the dashed line corresponds tog50.18
60.06) or as a logarithmic growth@see Eq.~4! and inset, where the
dashed line is to guide the eye#.
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dimensional where the scaling behavior is governed by
mean-field exponents modified by logarithmic corrections

Recently a modified version of the CLG model was intr
duced where the active particles are distributed to rando
chosen empty lattice sites@8#. Since the randomness of th
particle hopping breaks long range spatial correlations
model is expected to be characterized by the mean-field s
ing behavior of the CLG model. Mapping the dynamics
this random hopping CLG model to a simple branching p
cess one can derive the critical exponentb51. This value of
the order parameter exponent is also obtained from a fi
theoretical description of the CLG model@9# and was already
predicted from a phenomenological field theory@10# of the
so-called fix-energy stochastic sandpile model that is
pected to be in the same universality class.

TABLE I. The critical densityrc and the critical exponentsb
andg of the CLG model for various dimensionsD. The symbol*
denotes logarithmic corrections to the power-law behavior. In
case of the three-dimensional model the data of the fluctua
could be interpreted as a small exponent or as a logarithmic gro
~see text!.

D rc b g

2 0.3449460.00003 0.63760.009 0.38460.023
3 0.217960.0001 0.83760.015 0 or 0.1860.06
4 0.157160.0002 1* 0*
5 0.123060.0004 1 0

FIG. 7. The logarithmic derivative@Eq. ~5!# as a function ofr
2rc . The logarithmic derivative can be interpreted as an effec
exponentbeff . The figure shows that the four-dimensional expon
does not display a saturation as the exponents of the three-
five-dimensional models do. The dashed lines correspond to
three-dimensional valueb50.83760.015 and the mean-field valu
b51, respectively. The shadowed region marks the uncertaint
the determination ofb.
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Thus we assume that the scaling behavior of the or
parameter is given in leading order by the ansatz

^ra&;~r2rc!
bu ln~r2rc!uB ~6!

with b51. Therefore we varied in our analysis B andrc
until we get the expected asymptotic behavior. The best
sult is obtained for B50.39 andrc50.157160.0002 and the
corresponding scaling plot is shown in Fig. 8. As one can
our data are consistent with the assumption that
asymptotic scaling behavior of the four-dimensional mo
obeys Eq.~6!.

The mean-field behavior of the fluctuations is charact
ized by g50 that corresponds to a jump@8#. Taking the
logarithmic corrections into account we assume that
asymptotic scaling behavior of the fluctuations obeys the
satz

Dra5Dra
(0)2const~r2rc!u ln~r2rc!uG . ~7!

Plotting the fluctuations as a function of (r2rc)u ln(r
2rc)uG one varies the correction exponentG until one gets a
straight line. Convincing results are observed forG51.66
60.1 and the corresponding plot is shown in Fig. 9~for G
.1.76 andG,1.56 we observe significant curvatures!. The
extrapolation to the vertical axis yield the fluctuations at t
transition pointDra

(0)50.32560.005.
Thus we get that the scaling behavior of the fou

dimensional CLG model is characterized by the mean-fi
exponents modified by logarithmic corrections and we c
clude therefore that the upper critical dimension of the C
model isDc54. This value agrees with the conjecture of
field theory@7#.
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e
t
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FIG. 8. The density of active sites inD54 rescaled according to
Eq. ~6!. The assumed asymptotic behavior~straight line in a log-log
plot! is obtained forrc50.157160.0002 andB50.39. Thus the
scaling behavior of the order parameter of the four-dimensio
model is governed by the mean-field exponentb51 modified by
logarithmic corrections. The dashed line is just to guide the eye
3-4
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V. DÄ5

In the case of the five-dimensional model we conside
system sizes fromL54 up toL518. In the latter case 107

update steps were used to reach the steady state close
transition point. The obtained values of the order param
are plotted in Fig. 10. The average density of active s
seems to vanish linearly at the transition point. This is s
ported by the logarithmic derivative@Eq. ~5!# that is plotted
in Fig. 7. The effective exponent saturates in the vicinity

FIG. 9. The fluctuations of the order parameterDra as a func-
tion of (r2rc)u ln(r2rc)uG in D54 @see Eq.~7!#. Nearly straight
lines are obtained forG51.6660.1. Thus the scaling behavior o
the order parameter of the four-dimensional model is governed
the mean-field exponentg50 modified by logarithmic corrections
The dashed line corresponds to a linear fit with the slope20.643
and the interceptDra

(0)50.325.

FIG. 10. The average density of active sites^ra& as a function of
the densityr for various system sizesL in D55. The inset displays
^ra&/(r2rc) as a function ofr2rc . The saturation forr2rc→0
indicates that the asymptotic behavior of the order parameter ag
with the mean field behavior̂ra&;r2rc . The critical density is
rc50.123060.0004.
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the mean-field solutionb51. One has to admit that the sma
available system sizes ind55 (L<18) hinder an analysis o
the pure critical scaling behavior. But as we will see the d
are sufficient to indicate that the asymptotic scaling behav
is given byb51. Therefore, we plot in the inset of Fig. 1
^ra&/(r2rc) as a function ofr2rc . Approaching the tran-
sition point the rescaled density of active sites indeed s
rates. Thus the five-dimensional CLG model is characteri
by the mean-field scaling behavior

^ra&;r2rc . ~8!

The fluctuations of the order parameterDra are plotted in
Fig. 11. As one can see the fluctuations are characterize
a jump at the transition point. Following the mean-field b
havior one expects that the asymptotic behavior of the fl
tuations is given by

Dra5Dra
(0)2const~r2rc!. ~9!

In order to confirm this ansatz we plotDra/(r2rc) as a
function of r2rc . If the above ansatz is valid the corre
sponding curves have to display an asymptotic power-
behavior with the exponent21 and the prefactorDra

(0) .
This behavior is indeed observed~see inset of Fig. 11! and
we getDra

(0)50.23160.006.
Thus the asymptotic behavior of the five-dimension

CLG model is characterized by the mean-field expone
This behavior strongly supports the above conclusion t
the upper critical dimension of the CLG model is four.

y

es

FIG. 11. The fluctuations of the order parameterDra as a func-
tion of the densityr in D55. The symbols mark different system
sizesL ~see Fig. 10!. The dashed line marks the value of the critic
density. The inset displaysDra/(r2rc) as a function ofr2rc .
The asymptotic behavior is characterized by a simple (r2rc)

21

dependence~dashed line! that corresponds to the mean-field beha
ior ~see text!.
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VI. CONCLUSIONS

We analyze numerically the critical behavior of a CL
model in various dimensions. The values of the critical d
sity and of the critical exponents are determined and
results are listed in Table I. Our analysis suggests that fou
the upper critical dimension of the CLG model, i.e., the cr
cal exponents depend on the value of the dimension
e

01612
-
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r

D<4. Above this value we observe a mean-field like scal
behavior.
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